教学啦 > 高考复习 > 数学复习

八年级上册数学知识点【精选11篇】

发布时间

学习中的困难莫过于一节一节的台阶,虽然台阶很陡,但只要一步一个脚印的踏,攀登一层一层的台阶,才能实现学习的理想。那么接下来给大家分享一些八年级数学知识点,希望对大家有所帮助。

函数的三种表示法及其优缺点 1

(1)关系式(解析)法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图象法

用图象表示函数关系的方法叫做图象法。

数学八年级上册知识点 2

全等三角形

一、知识框架:

二、知识概念:

1.基本定义:

⑴全等形:能够完全重合的两个图形叫做全等形。

⑵全等三角形:能够完全重合的两个三角形叫做全等三角形。

⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点。

⑷对应边:全等三角形中互相重合的边叫做对应边。

⑸对应角:全等三角形中互相重合的角叫做对应角。

2.基本性质:

⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性。

⑵全等三角形的性质:全等三角形的对应边相等,对应角相等。

3.全等三角形的判定定理:

⑴边边边():三边对应相等的两个三角形全等。

⑵边角边():两边和它们的夹角对应相等的两个三角形全等。

⑶角边角():两角和它们的夹边对应相等的两个三角形全等。

⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等。

⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等。

4.角平分线:

⑴画法:

⑵性质定理:角平分线上的点到角的两边的距离相等。

⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上。

5.证明的基本方法:

⑴明确命题中的已知和求证。(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)

⑵根据题意,画出图形,并用数字符号表示已知和求证。

⑶经过分析,找出由已知推出求证的途径,写出证明过程。

数学不能只依靠上课听得懂

很多初中生认为自己只要上数学课听得懂就够了,但是一做到综合题就蒙了,基础题会做,但是会马虎。这类问题都是学生在课堂上都以为自己听得懂就够了。

初中同学要首先对数学做一个认知,听得懂≠会做,会做≠拿的到分。听得懂只占你数学成绩的20%,仅仅听得懂只说明你理解能力还可以,不说明你能拿到很高的数学成绩。

只有听的懂理解了加上练,再加上多练,达到最后又快又准的做出来,这时候的数学成绩才会有长足的进步。

质数和合数应用

1、质数与密码学:所谓的公钥就是将想要传递的信息在编码时加入质数,编码之后传送给收信人,任何人收到此信息后,若没有此收信人所拥有的密钥,则解密的过程中(实为寻找素数的过程),将会因为找质数的过程(分解质因数)过久,使即使取得信息也会无意义。

2、质数与变速箱:在汽车变速箱齿轮的设计上,相邻的两个大小齿轮齿数设计成质数,以增加两齿轮内两个相同的齿相遇啮合次数的最小公倍数,可增强耐用度减少故障。

八年级上册数学知识 3

圆的认识

圆的定义:

圆是一种几何图形。当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆。

在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

相关定义:

1 在同一平面内,到定点的距离等于定长的点的集合叫做圆。这个定点叫做圆的圆心。图形一周的长度,就是圆的周长。

2 连接圆心和圆上的任意一点的线段叫做半径,字母表示为r。

3 通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。直径所在的直线是圆的对称轴。

4 连接圆上任意两点的线段叫做弦。最长的弦是直径,直径是过圆心的弦。

5 圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,优弧是用三个字母表示。小于半圆的弧称为劣弧,劣弧用两个字母表示。半圆既不是优弧,也不是劣弧。优弧是大于180度的弧,劣弧是小于180度的弧。

6 由两条半径和一段弧围成的`图形叫做扇形。

7 由弦和它所对的一段弧围成的图形叫做弓形。

8 顶点在圆心上的角叫做圆心角。

9 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

10 圆周长度与圆的直径长度的比值叫做圆周率。它是一个无限不循环小数,通常用π表示,π=3.14159265……在实际应用中,一般取π≈3.14。

11圆周角等于相同弧所对的圆心角的一半。

12 圆是一个正n边形(n为无限大的正整数),边长无限接近0但不等于0。

圆的集合定义:

圆是平面内到定点的距离等于定长的点的集合,其中定点是圆心,定长是半径。

圆的字母表示:

以点O为圆心的圆记作“⊙O”,读作O”。

圆—⊙ ;

半径—r或R(在环形圆中外环半径表示的字母);

弧—⌒ ;

直径—d ;

扇形弧长—L ;

周长—C ;

面积—S。

章知识点 4

1、刻画数据的集中趋势(平均水平)的量:平均数、众数、中位数

2、平均数

由函数关系式画其图像的一般步骤 5

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

八年级上册数学知识点归纳 6

轴对称

一。知识框架

二。知识概念

1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

5.等腰三角形的判定:等角对等边。

6.等边三角形角的特点:三个内角相等,等于60°,

7.等边三角形的判定:三个角都相等的三角形是等腰三角形。

有一个角是60°的等腰三角形是等边三角形

有两个角是60°的三角形是等边三角形。

8.直角三角形中,30°角所对的直角边等于斜边的一半。

9.直角三角形斜边上的中线等于斜边的一半。

本章内容要求学生在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经历数学美,正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来解决一些数学问题。

八年级上册数学知识点 7

整式的乘除与分解因式

一。知识概念

1.同底数幂的乘法法则:(m,n都是正数)

2..幂的乘方法则:(m,n都是正数)

3.整式的乘法

(1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

(3).多项式与多项式相乘

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

4.平方差公式:

5.完全平方公式:

6.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n都是正数,且m>n).

在应用时需要注意以下几点:

①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.

②任何不等于0的数的0次幂等于1,即,如,(-2.50=1),则00无意义。

③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;当a<0时,a-p的值可能是正也可能是负的,如,

④运算要注意运算顺序。

7.整式的除法

单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加。

8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。

分解因式的一般方法:1.提公共因式法2.运用公式法3.十字相乘法

分解因式的步骤:(1)先看各项有没有公因式,若有,则先提取公因式;

(2)再看能否使用公式法;

(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;

(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;

(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止。

整式的乘除与分解因式这章内容知识点较多,表面看来零碎的概念和性质也较多,但实际上是密不可分的整体。在学习本章内容时,应多准备些小组合作与交流活动,培养学生推理能力、计算能力。在做题中体验数学法则、公式的简洁美、和谐美,提高做题效率。

八年级上册数学知识点 8

一、变量与函数

1.变量:在一个变化过程中,数值发生变化的量叫做变量。

2.常量:数值始终不变的量叫做 常量。

3.函数:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说y是x的函数,x是自变量。Y的值叫函数值。

4.函数解析式:表示x与y的函数关系的式子,叫函数解析式。自变量的取值不能使函数解析式的分母为0。

5.函数的图像:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象。

6.描点法画函数图像的步骤:①列表、②描点、③连线。

表示函数的方法:①列表法、②解析式法、③图像法。

二、一次函数

1.正比例函数:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数。其中k叫做比例系数。

2.正比例函数的图象与性质:

(1)图象:正比例函数y= kx (k 是常数,k≠0)) 的图象是经过原点的一条直线,我们称它为直线y= kx 。

(2)性质:当k>0时,直线y= kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y= kx经过二,四象限,从左向右下降,即随着 x的增大y反而减小。

3.一次函数:一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数。当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例。

4.函数的图象与性质:

(1)一次函数y=kx+b(k,b为常数,且k≠0)的图象是一条直线,我们称它为直线 y=kx+b。 相当于由直线y=kx平移|b|个单位长度而得。

(2)性质:当k>0时,直线y= kx+b从左向右上升,即随着x的增大y也增大;当k<0时,直线y= kx+b从左向右下降,即随着 x的增大y反而减小。

5.求函数解析式的方法: 待定系数法(先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。)

函数: 9

一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

八年级上册数学知识点 10

1、实数的概念及分类

①实数的分类

②无理数

无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

开方开不尽的数,如 √7 ,3 √2等;

有特定意义的数,如圆周率π,或化简后含有π的数,如π /?+8等;

有特定结构的数,如0.1010010001…等;

某些三角函数值,如sin60°等

2、实数的倒数、相反数和绝对值

①相反数

实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。

②绝对值

在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。|a|≥0.0的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

③倒数

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1.0没有倒数。

④数轴

规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

⑤估算

3、平方根、算数平方根和立方根

①算术平方根

一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。

性质:正数和零的算术平方根都只有一个,0的算术平方根是0。

②平方根

一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。

性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

开平方求一个数a的平方根的运算,叫做开平方。注意 √a的双重非负性:√a≥0 ; a≥0

③立方根

一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a 的立方根(或三次方根)。

表示方法:记作 3 √a

性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:- 3 √a=3 √-a,这说明三次根号内的负号可以移到根号外面。

4、实数大小的比较

①实数比较大小

正数大于零,负数小于零,正数大于一切负数;

数轴上的两个点所表示的数,右边的总比左边的大;

两个负数,绝对值大的反而小。

②实数大小比较的几种常用方法

数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

求差比较:设a、b是实数 a-b>0a>b; a-b=0a=b; a-b<0a<b 。

求商比较法:设a、b是两正实数,

绝对值比较法:设a、b是两负实数,则∣a∣>∣b∣a<b。

平方法:设a、b是两负实数,则 a2>b2a<b 。

5、算术平方根有关计算(二次根式)

①含有二次根号“ √ ”;被开方数a必须是非负数。

②性质:

③运算结果若含有“ √ ”形式,必须满足:

被开方数的因数是整数,因式是整式

被开方数中不含能开得尽方的因数或因式

6、实数的运算

①六种运算:加、减、乘、除、乘方 、开方。

②实数的运算顺序

先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

③运算律

加法交换律 a+b= b+a

加法结合律 (a+b)+c= a+( b+c )

乘法交换律 ab= ba

乘法结合律 (ab)c = a( bc )

乘法对加法的分配律 a( b+c )=ab+ac

正比例函数和一次函数 11

1、正比例函数和一次函数的概念

一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。

2、一次函数的图像:所有一次函数的图像都是一条直线

3、一次函数、正比例函数图像的主要特征:一次函数 的图像是经过点(0,b)的直线;正比例函数 的图像是经过原点(0,0)的直线。

【八年级上册数学知识点】相关文档

语文复习 数学复习 英语复习 物理复习 化学复习 生物复习 历史复习 地理复习 政治复习 复习资料
23 4257